由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - Re: a probability problem, anyone can help me?
相关主题
Problem about combinatorial probabilityRe: a dumb probability problem, please help
Engineering: Using 'nature's toolbox,' a DNA comphelp!!--problem of probability
An optimization problemRe: help!!--problem of probability: solution
Re: 问个很土的问题(COMBINATORY DISCREPANCY?)Re: 概率题!概率题!请教!
请求帮助关于投递文章菜鸟请教一道物理sub题
求一篇文章 (in Lecture Notes in Maths) (转载)Re: A probability problem
赌场问题: frequentist vs. KaynesianRe: Is this problem difficult?
Re: is this probability problem hard?Re: 关于概率估计的一个一般性原理的问题
相关话题的讨论汇总
话题: 2n话题: 2k话题: anyone话题: where
进入Science版参与讨论
1 (共1页)
b*****e
发帖数: 474
1
Assuming P(n,k) is the probability that there are 2k+1 white balls
at the n'th step, then the recursive relation is:
P(n,k) = (2n-2k-1)/(2n)*P(n-1,k) + (2k-1)/(2n)*P(n-1,k-1)
Let P(n,k) = f(n,k)/D(n,k), where D(n,k)=(2n)!!/((2k-1)!!*(2n-2k-1)!!).
Here !! is double-factorial, i.e., m!! = m*(m-2)*(m-4)*(m-6)..., thus
f(n,k) = f(n-1,k) + f(n-1,k-1). We can easily prove (by induction) that
f(n,k) = q * C(n,k), where q is a constant, and C(n,k) is
the combinatorial number = n!/(k!*(n-k)!).
(recall C(
1 (共1页)
进入Science版参与讨论
相关主题
Re: 关于概率估计的一个一般性原理的问题请求帮助关于投递文章
[转载] Re: Matched Filter: problems for discussion求一篇文章 (in Lecture Notes in Maths) (转载)
我的一个经验公式赌场问题: frequentist vs. Kaynesian
Re: 另外一道高中物理题-征解Re: is this probability problem hard?
Problem about combinatorial probabilityRe: a dumb probability problem, please help
Engineering: Using 'nature's toolbox,' a DNA comphelp!!--problem of probability
An optimization problemRe: help!!--problem of probability: solution
Re: 问个很土的问题(COMBINATORY DISCREPANCY?)Re: 概率题!概率题!请教!
相关话题的讨论汇总
话题: 2n话题: 2k话题: anyone话题: where