由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - prove or find counterexample
相关主题
矩阵特征值问题请教繼續問Borel set問題
Re: prove it or give a counterexample怎么证明: Asymptotically SUM i*Pr(i) is bounded by O(n^a)
求助一道微积分证明题怎么证明连续增函数的空间是闭集?(40个包子)
请教一个小的证明help on piecewise linear functions
问个简单的问题诚心请问关于convex的一个问题
请教:单调性问题请教:如何证明Green's function的唯一性
大家觉得什么样的证明是简单但却有趣的?函数期望值关于分布概率参数的性质
A math questionProposition, Lemma, Theorem (转载)
相关话题的讨论汇总
话题: xf话题: infty话题: 2f话题: 2x
进入Mathematics版参与讨论
1 (共1页)
L********3
发帖数: 204
1
f(x):[0,\infty)->R^+, f is strictly increasing and strictly convex, i.e.
f>0, f'>0, f''>=0 on (0,\infty). Moreover f(0)=0, f'(0)=0.
Show that: 2x^2f''(x)-xf'(x)+f(x)>0 on (0,\infty).
Counterexample is wellcome as well.
You can also relax the condition on the domain
(instead of on (0,\infty), any interval (0, a), a>0 is ok).
You can also neglect the condition f'(0)=0.
Thanks.
f*c
发帖数: 687
2
好像既有正例也有反例。
可能的反例:令f渐近趋于y=x-1,f'渐近趋于1,让f" 渐近 O(x^{-3})...

【在 L********3 的大作中提到】
: f(x):[0,\infty)->R^+, f is strictly increasing and strictly convex, i.e.
: f>0, f'>0, f''>=0 on (0,\infty). Moreover f(0)=0, f'(0)=0.
: Show that: 2x^2f''(x)-xf'(x)+f(x)>0 on (0,\infty).
: Counterexample is wellcome as well.
: You can also relax the condition on the domain
: (instead of on (0,\infty), any interval (0, a), a>0 is ok).
: You can also neglect the condition f'(0)=0.
: Thanks.

f***r
发帖数: 1126
3
举个反例吧:f(x)=e^{.1x}+e^{-.1x}-2
2x^2f"(x)-xf'(x)+f(x)=-0.15x^2+O(x^3) when x\to 0
L********3
发帖数: 204
4
Thanks, but your calculation seems to be incorrect
the last line ...=0.03x^2+O(x^3)?

【在 f***r 的大作中提到】
: 举个反例吧:f(x)=e^{.1x}+e^{-.1x}-2
: 2x^2f"(x)-xf'(x)+f(x)=-0.15x^2+O(x^3) when x\to 0

L********3
发帖数: 204
5
the problem is: can you do it with the restriction f(0)=0, etc.
Thanks.

【在 f*c 的大作中提到】
: 好像既有正例也有反例。
: 可能的反例:令f渐近趋于y=x-1,f'渐近趋于1,让f" 渐近 O(x^{-3})...

f***r
发帖数: 1126
6
不好意思,真算错了。不过这个问题的答案应该是很符合直觉的:只要取一个x使得f"(
x)=0,那么原来的不等式就等价于
f(x)=int_0^x f'(s)ds>xf'(x),
Impossible!(因为f'(s)
【在 L********3 的大作中提到】
: Thanks, but your calculation seems to be incorrect
: the last line ...=0.03x^2+O(x^3)?

L********3
发帖数: 204
7
多谢用心哈
在x趋于零的时候,貌似答案是肯定的:
f(x)=f(0)+f'(0)x+f''(0)x^2/2+O(x^3)
f'(x)=f'(0)+f''(0)x+O(x^2)
now: f(x) ->f''(0)x^2
f'(x)->f''(0)x
f''(x)->f''(0), (suppose f is smooth enough)
then 2x^2f''-xf'+f->x^2(2f''(0)-f''(0)+f''(0)/2)=3/2*x^2*f''(0)>0, when x
small
你的思路的问题在于:当f''(x)接近0,f接近线性, f'接近常数
所以f=int_0^x f'(s)ds虽然不大于xf'(x),但是差的余量能被f''补上。
不知道你同意不?

"(

【在 f***r 的大作中提到】
: 不好意思,真算错了。不过这个问题的答案应该是很符合直觉的:只要取一个x使得f"(
: x)=0,那么原来的不等式就等价于
: f(x)=int_0^x f'(s)ds>xf'(x),
: Impossible!(因为f'(s)
M****o
发帖数: 4860
8
since f'(x)<=xf''(x)
2x^2f''(x)-xf'(x)+f(x)>= x^2*f''(x)+f(x)>0 for x>0

【在 L********3 的大作中提到】
: f(x):[0,\infty)->R^+, f is strictly increasing and strictly convex, i.e.
: f>0, f'>0, f''>=0 on (0,\infty). Moreover f(0)=0, f'(0)=0.
: Show that: 2x^2f''(x)-xf'(x)+f(x)>0 on (0,\infty).
: Counterexample is wellcome as well.
: You can also relax the condition on the domain
: (instead of on (0,\infty), any interval (0, a), a>0 is ok).
: You can also neglect the condition f'(0)=0.
: Thanks.

f***r
发帖数: 1126
9
你的前面那段是对的。
后面的:f"(x)可以构造得任意小,但是 xf'(x)-f(x)是个递增函数。

【在 L********3 的大作中提到】
: 多谢用心哈
: 在x趋于零的时候,貌似答案是肯定的:
: f(x)=f(0)+f'(0)x+f''(0)x^2/2+O(x^3)
: f'(x)=f'(0)+f''(0)x+O(x^2)
: now: f(x) ->f''(0)x^2
: f'(x)->f''(0)x
: f''(x)->f''(0), (suppose f is smooth enough)
: then 2x^2f''-xf'+f->x^2(2f''(0)-f''(0)+f''(0)/2)=3/2*x^2*f''(0)>0, when x
: small
: 你的思路的问题在于:当f''(x)接近0,f接近线性, f'接近常数

L********3
发帖数: 204
10
en, you are talking about when x->inf?

【在 f***r 的大作中提到】
: 你的前面那段是对的。
: 后面的:f"(x)可以构造得任意小,但是 xf'(x)-f(x)是个递增函数。

L********3
发帖数: 204
11
sorry, f' is not necessarily convex, right?

【在 M****o 的大作中提到】
: since f'(x)<=xf''(x)
: 2x^2f''(x)-xf'(x)+f(x)>= x^2*f''(x)+f(x)>0 for x>0

L********3
发帖数: 204
12
e.g. f(x)=e^(-x)-1+x
so it seemingly only work for x near 0

【在 L********3 的大作中提到】
: sorry, f' is not necessarily convex, right?
b*******g
发帖数: 363
13

at least not true for some such f(x)

【在 L********3 的大作中提到】
: e.g. f(x)=e^(-x)-1+x
: so it seemingly only work for x near 0

z*********g
发帖数: 37
14
For the functions with continuous 3rd order derivatives, the statement is
true near 0. The statement is obviously true when f'''>=0. We now
try to construct some functions that will have
2x^2f''(x)-xf'(x)+f(x)=0 for some x>0.
Choose, f=bx-4x^{1/2}, for some $b>0$
f'(x)=b-2x^{-1/2},
f''(x)=x^{-3/2},
Clearly, for $x>16/b^2, all of them are positive. For x in [0, 16/b^2],
you patch it by some nice convex and positive functions with x^2 order
at x=0.
Now, 2x^2f''(x)-xf'(x)+f(x)=2x^{1/2}-bx+2x^{1/2}+bx-4x^{1/2}=0.
Therefore, your statement is not true for general functions.
Is this an acceptable counter-example?

【在 L********3 的大作中提到】
: e.g. f(x)=e^(-x)-1+x
: so it seemingly only work for x near 0

1 (共1页)
进入Mathematics版参与讨论
相关主题
Proposition, Lemma, Theorem (转载)问个简单的问题
请问:这个结论正确吗?请教:单调性问题
有人看了今天archive最后一篇文章没有?大家觉得什么样的证明是简单但却有趣的?
悬赏200伪币征解A math question
矩阵特征值问题请教繼續問Borel set問題
Re: prove it or give a counterexample怎么证明: Asymptotically SUM i*Pr(i) is bounded by O(n^a)
求助一道微积分证明题怎么证明连续增函数的空间是闭集?(40个包子)
请教一个小的证明help on piecewise linear functions
相关话题的讨论汇总
话题: xf话题: infty话题: 2f话题: 2x